Exercise 1 (2 pts) Write the Fourier series generated by the function $f:[0,2 \pi] \longrightarrow \mathbb{R}$ defined by : $f(x)=27 \cos (10 x)-35 \sin (100 x)$ (Advice : do not spend more than 1 minute on this exercise).

Exercise 2 (48 pts)

1. In the plane \mathbb{R}^{2}, we are interested in the curve \mathcal{P} of polar equation $r=\frac{1}{1+\cos \theta}$.
(a) By considerations of periodicity and symmetry, find an optimal interval I for θ that will enable you at the end of this part to draw the entire curve \mathcal{P}. (5 pts)
(b) Find, when they exist, the value(s) of θ in I for which the curve \mathcal{P} : i) intersects with the x-axis, ii) intersects with the y-axis, iii) passes by the pole O. Then, indicate precisely the tangent lines to \mathcal{P} at the points corresponding to these values of θ. (7 pts)
(c) If M is the point of \mathcal{P} corresponding to the angle θ, what can you say about the distance from the pole to M when $\theta \rightarrow \pi$? (5 pts)
(d) Using the results you obtained in the preceding questions, sketch the curve \mathcal{P}. Do you recognize the geometrical nature of \mathcal{P} ? Check that your guess is correct by writing a cartesian equation for \mathcal{P}. (6 pts)
2. Let f be the function defined by : $f(x, y)=\frac{\frac{1}{2}-x}{y^{2}-1+2 x}$.
(a) Find and draw quickly the domain of definition D of f. (5 pts)
(b) Is D an open subset of \mathbb{R}^{2} ? a closed subset of \mathbb{R}^{2} ? Both open and closed? Neither open nor closed? Is it bounded or unbounded ? Justify all your answers. (10 pts)
(c) Does $\lim _{(x, y) \rightarrow\left(\frac{1}{2}, 0\right)} f(x, y)$ exist? If yes, compute it. If no, prove that it does not exist. (10 pts)
Exercise 3 (50 pts) Let $\sigma: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ be the function defined by $\sigma(\theta, \varphi)=(x(\theta, \varphi), y(\theta, \varphi), z(\theta, \varphi))$, where :

$$
\left\{\begin{aligned}
x(\theta, \varphi) & =\frac{1}{3}(\sin \theta)(\cos \varphi) \\
y(\theta, \varphi) & =(\sin \theta)(\sin \varphi) \\
z(\theta, \varphi) & =\frac{1}{2} \cos \theta
\end{aligned}\right.
$$

We also consider the function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ defined by $f(x, y, z)=9 x^{2}+y^{2}+4 z^{2}$, and we set $h=f \circ \sigma$, that is, $h: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is the function defined by :

$$
h(\theta, \varphi)=f\left(\frac{1}{3}(\sin \theta)(\cos \varphi),(\sin \theta)(\sin \varphi), \frac{1}{2} \cos \theta\right)
$$

1. (a) By using chain rule (without evaluating $h(\theta, \varphi)$), compute $\frac{\partial h}{\partial \theta}(\theta, \varphi)$ and $\frac{\partial h}{\partial \varphi}(\theta, \varphi)$. (10 pts)
(b) Give a cartesian equation for the level surface \mathcal{E} of f passing by the point $(0,-1,0)$. (4 pts)
(c) Show that for any $(\theta, \varphi) \in \mathbb{R}^{2}$, the point $\sigma(\theta, \varphi)$ belongs to \mathcal{E}. (5 pts)
(d) Can you explain the results obtained in question (a)? (6 pts)
2. (a) Write the gradient of f at a point (x, y, z) of \mathbb{R}^{3}. Deduce the unit vector giving the direction in which $f(x, y, z)$ will decrease most rapidly, starting from the point $(0,-1,0)$. ($6 p t s$)
(b) Give a cartesian equation for the tangent plane P to \mathcal{E} at $(0,-1,0)$. (4 pts)
(c) What is the geometrical nature of \mathcal{E} ? Sketch the shape of \mathcal{E} in \mathbb{R}^{3}. Indicate on the same figure the vector $\vec{\nabla} f(0,-1,0)$, as well as the tangent plane P. (5 pts)
3. Starting from the point $(\pi, 2 \pi)$ in the $\theta \varphi$-plane \mathbb{R}^{2}, the value $g(\theta, \varphi)$ of a differentiable function $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ increases most rapidly in the direction of the vector $\vec{u}=\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$. Find the value of $6 \frac{\partial g}{\partial \theta}(\pi, 2 \pi)-2 \frac{\partial g}{\partial \varphi}(\pi, 2 \pi) .(10 p t s)$
4. (a) What is the topological boundary (set of all boundary points) of \mathcal{E} ? (3 extra pts)
(b) We can define a different notion of boundary, the geometrical boundary : a "twodimensional ant", walking on a CD (Compact Disc), getting away from the center, reaches at some point the geometrical boundary of the CD. What can you say about the geometrical boundary of \mathcal{E} ? (Hint : Let the ant walk on $\mathcal{E} \ldots$..) (1 extra pt)
